Disseminating ABA into Public Schools: Prior and Current Research at the University of Houston, Clear Lake

Dorothea C. Lerman, Ph.D., BCBA-D
Introduction

- Barriers to dissemination
 - Training time
 - Resources
 - Availability of qualified trainers

Prior and Current Research

- **Focused Training on Core ABA Teaching Procedures**
 - Outcomes of a five-day summer training program (preference assessments, discrete-trial teaching, incidental teaching)
 - Lerman, Vorndran, Addison, & Kuhn (2004)
 - Lerman, Tetreault, Hovanetz, Strobel, & Garro (2008)
 - Comparison of written, vocal, and video-assisted feedback
 - Luck, Lerman, Wu, Dupuis, & Hussein (under review)
Focused Training on Core ABA Teaching Procedures

- Pyramidal training of peers and paraprofessionals

 Woo, Lerman, Luck, Dupuis, & Bao (in preparation)
 Lerman, Luck, Smothermon, Zey, Custer, & Smith (in preparation)
Introduction

- Training to Identify Potential Antecedents/Consequences of Problem Behavior
 - Narrative versus structured A-B-C recording
 - Lerman, Tetreault, Hovanetz, Stroble, & Garro (2008)
 - Computer-based training in A-C detection
 - Scott, Lerman, & Luck (in preparation)
Five-Day Focused Training

Topics

- Basic Concepts of Applied Behavior Analysis
- Preference Assessments
- Behavioral Assessment
- Discrete Trial Teaching
- Shaping and Chaining
- Generalization and Maintenance of Skills
- Incidental Teaching
- IEP Goals/Objectives
- Data Collection
- Managing Problem Behavior

Includes both didactic and hands-on training
Lerman et al. (2004)

Baseline (in Role Play)

Discussion and Handouts

Role Play with Feedback

In-Situ

Feedback
Main Classroom (DTT)

No Feedback
Main Classroom (Pref Assessment, Incidental Teaching)

No Feedback
Generalization Setting (DTT and Incidental Teaching)
Conclusions

- Teachers acquired large number of skills via brief intensive training

- In-situ feedback unnecessary for some ABA skills (preference assessment, incidental teaching)

- Skills generalized across children and locations

- Data collection impractical
Lerman et al. (2008)

Baseline (in situ) → Discussion and Handouts → Role Play with Feedback → In-Situ Practice with Feedback → Follow-up in Teacher’s Classroom

“All-Trial” Data Collection Replaced Trial-by-Trial Data Collection
Lerman et al. (2008)
Lerman et al. (2008)
Conclusions

- Brief, intensive training effective
- Practical for practitioners
- Adequate reliability/sensitivity of measurement
- Monthly feedback sufficient to maintain skills
- What type of feedback?
Comparison of Different Types of Feedback
Luck et al. (under review)

- Commonly Used in Classrooms
 - Vocal
 - Written

- Beneficial Alternative?
 - “Video Assisted”

- Examined effectiveness and preference (choice)
Part 1: Vocal vs Written Feedback

Paired Choice (PS) vs Multiple Stimulus Without Replacement (MSWO) Preference Assessments

<table>
<thead>
<tr>
<th>Participant</th>
<th>PS</th>
<th>MSWO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meredith</td>
<td>Written</td>
<td>Vocal</td>
</tr>
<tr>
<td>Christina</td>
<td>Vocal</td>
<td>Written</td>
</tr>
<tr>
<td>Bernice</td>
<td>Written</td>
<td>Vocal</td>
</tr>
<tr>
<td>Betty</td>
<td>Vocal</td>
<td>Written</td>
</tr>
<tr>
<td>Robin</td>
<td>Written</td>
<td>Vocal</td>
</tr>
<tr>
<td>Trudy</td>
<td>Vocal</td>
<td>Written</td>
</tr>
</tbody>
</table>
Part 1: Vocal vs Written Feedback

Paired Choice (PS) vs Multiple Stimulus Without Replacement (MSWO) Preference Assessments

- **Written**: No questions answered. Could reference between sessions.
- **Vocal**: Questions answered. Unable to write notes.
Part 2: Vocal/Written vs. Video-Assisted Feedback

DTT with least-to-most (LTM) vs most-to-least (MTL) prompting hierarchies

<table>
<thead>
<tr>
<th>Participant</th>
<th>LTM</th>
<th>MTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meredith</td>
<td>Written</td>
<td>Video</td>
</tr>
<tr>
<td>Christina</td>
<td>Written</td>
<td>Video</td>
</tr>
<tr>
<td>Bernice</td>
<td>Video</td>
<td>Vocal</td>
</tr>
<tr>
<td>Betty</td>
<td>Vocal</td>
<td>Video</td>
</tr>
<tr>
<td>Robin</td>
<td>Video</td>
<td>Vocal</td>
</tr>
<tr>
<td>Trudy</td>
<td>Video</td>
<td>Written</td>
</tr>
</tbody>
</table>
Part 2: Vocal/Written vs. Video-Assisted Feedback

DTT with least-to-most (LTM) vs most-to-least (MTL) prompting hierarchies

- **Written**
 - No questions answered
 - Could reference between sessions

- **Vocal**
 - Questions answered
 - Unable to write notes

- **Video**
 - Session recorded
 - Feedback delivered as video played
 - Questions answered
Part 1 Results
Part 1
Representative Results
Part 2 Results
Part 2
Representative Results
Effectiveness - Summary

<table>
<thead>
<tr>
<th>Participant</th>
<th>Written vs. Vocal</th>
<th>Written vs. Video</th>
<th>Vocal vs. Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meredith</td>
<td>Written</td>
<td>Equal</td>
<td>N/A</td>
</tr>
<tr>
<td>Christina</td>
<td>Equal</td>
<td>Video</td>
<td>N/A</td>
</tr>
<tr>
<td>Bernice</td>
<td>Equal</td>
<td>N/A</td>
<td>Vocal</td>
</tr>
<tr>
<td>Betty</td>
<td>Equal</td>
<td>N/A</td>
<td>Equal</td>
</tr>
<tr>
<td>Robin</td>
<td>Equal</td>
<td>N/A</td>
<td>Equal</td>
</tr>
<tr>
<td>Trudy</td>
<td>Written</td>
<td>Equal</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Part 1
Choice

Part 2
Choice
Part 1
Representative Results

Cumulative Number of Selections

Sessions

Part 2
Representative Results

Cumulative Number of Selections

Sessions
<table>
<thead>
<tr>
<th>Participant</th>
<th>Written vs. Vocal</th>
<th>Written vs. Video</th>
<th>Vocal vs. Video</th>
<th>Overall Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meredith</td>
<td>Vocal</td>
<td>Written</td>
<td>N/A</td>
<td>Vocal</td>
</tr>
<tr>
<td>Christina</td>
<td>Written</td>
<td>Written</td>
<td>N/A</td>
<td>Vocal</td>
</tr>
<tr>
<td>Bernice</td>
<td>Vocal</td>
<td>N/A</td>
<td>Vocal</td>
<td>Vocal</td>
</tr>
<tr>
<td>Betty</td>
<td>No Preference</td>
<td>N/A</td>
<td>Vocal</td>
<td>Vocal</td>
</tr>
<tr>
<td>Robin</td>
<td>Vocal</td>
<td>N/A</td>
<td>Vocal</td>
<td>N/A</td>
</tr>
<tr>
<td>Trudy</td>
<td>No Preference</td>
<td>No Preference</td>
<td>N/A</td>
<td>Vocal</td>
</tr>
</tbody>
</table>
Conclusions

- All forms of feedback generally effective
- Majority showed preference for one type
- Training thus far restricted to teachers!!!
Pyramidal Training of Paraprofessionals
Lerman et al. (in preparation)

- Targeted Skill: DTT using LTM + Error Correction
- 16 teacher-paraprofessional pairs
- BST to mastery for teachers
- Given all necessary materials; told “teach as you think practical in classroom”
- Descriptive analysis of outcomes
Outcomes for Paraprofessionals
Outcomes for Paraprofessionals: Representative Results

- **Sarah (Claire)**
 - BL Test
 - In-Situ (Child) Test
 - In-Situ (Sim) Test
 - Gen. Test

- **Zoey (Olivia)**
 - BL Test
 - In-Situ (Sim) Test
 - In-Situ (Child) Test

- **Diane (Kassandra)**
 - BL Test
 - In-Situ (Sim) Test
 - In-Situ (Child) Test

- **Madison (Patti)**
 - BL Test
 - In-Situ (Child) Test
 - In-Situ (Sim) Test
 - Gen. Test
Trainer (Teacher) Integrity – Use of Components

Graphs showing the use of components in different scenarios:

1. **Initial BST**
 - Instructions
 - Modeling
 - Role Play

2. **In-Situ (Simulation)**
 - Praise
 - Corrective Feedback
 - Data Collection

3. **In-Situ (Child)**
 - Praise
 - Corrective Feedback
 - Data Collection
Trainer (Teacher) Integrity – Correct Use

Graph 1: Initial BST
- Percentage of Components Covered
- Instructions, Modeling, Role Play

Graph 2: In-Situ (Simulation)
- Percentage of Opportunities (Correct)
- Praise, Corrective, Data, Info

Graph 3: In-Situ (Child)
- Percentage of Opportunities (Correct)
- Praise, Corrective, Data, Info
Findings

- All paraprofessionals adequately trained

- 7 of 16 trainers received experimenter feedback

- Mean training time = 263 min (range, 125 min – 325 min)

- Trainers used essential BST components
 - More likely to correct than praise
 - Least likely to collect integrity data
 - But no clear relationship to training outcome!
Identifying Potential Antecedents/Consequences of Problem Behavior Through A-B-C Recording

- Benefits of competency
 - Descriptive data provides information to
 - Generate hypotheses
 - Design functional analysis
 - Evaluate intervention effects
 - Reduces inadvertent reinforcement of problem behavior?

- Lerman, Hovanetz, Strobel, & Tetreault (2009)
 - Narrative vs structured A-B-C recording (accuracy/ease)

- Scott, Lerman, & Luck (in preparation)
 - Computer-based training (detection of multiple and subtle events)
<table>
<thead>
<tr>
<th>EVENT</th>
<th>DESCRIPTION</th>
<th>OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eddie was told to go to gym class</td>
<td>Yelled, threw a book, and sat on the floor</td>
<td>Eddie was told to stop misbehaving. He was kept in the classroom instead of going to gym.</td>
</tr>
<tr>
<td>The class was watching a movie; I was working at my desk</td>
<td>Ran out of the classroom</td>
<td>I retrieved Eddie and made him sit near my desk</td>
</tr>
<tr>
<td>Eddie was working with the speech therapist</td>
<td>Yelled and tried to hit the speech therapist</td>
<td>He was returned to the classroom and placed in time out</td>
</tr>
</tbody>
</table>
Structured A-B-C

<table>
<thead>
<tr>
<th>DATE: __________________________________</th>
</tr>
</thead>
</table>

__Aggression	__Ignored By Someone	__Attention, Response
__Self-Injury	__Material/Food Removed	Block
__Elopement	__Other Request Denied	__Redir. to Other Activity
__	__Given Instruction/Prompt	__Material or Food Given
__	__None	__Work Terminated
__		__No Response

__Aggression	__Ignored By Someone	__Attention, Response
__Self-Injury	__Material/Food Removed	Block
__Elopement	__Other Request Denied	__Redir. to Other Activity
__	__Given Instruction/Prompt	__Material or Food Given
__	__None	__Work Terminated
__		__No Response
Lerman et al. (2009)

Overall Occurrence Nonoccurrence Per Response

<table>
<thead>
<tr>
<th>Percentage Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
</tr>
<tr>
<td>Occurrence</td>
</tr>
<tr>
<td>Nonoccurrence</td>
</tr>
<tr>
<td>Per Response</td>
</tr>
</tbody>
</table>

Antec Conseq Antec Conseq Antec Conseq

Occurrence Nonoccurrence Per Response

<table>
<thead>
<tr>
<th>Percentage Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence</td>
</tr>
<tr>
<td>Nonoccurrence</td>
</tr>
<tr>
<td>Per Response</td>
</tr>
</tbody>
</table>

Antec Conseq Antec Conseq Antec Conseq

Lerman et al. (2009)
Conclusions

- Modestly accurate under ideal recording conditions
- Neither sufficient to reliably identify function
- Structured form
 - Decreased likelihood of misses (particularly consequences)
 - Preferred by majority of teachers
- Problems detecting simultaneous or subtle events?
Can we improve the detection of simultaneous/subtle events?

- **Simultaneous Events**

 Examples:

 Antecedents:

 demand delivered + tangible removed

 Consequences:

 escape + attention delivered
Can we improve the detection of simultaneous/subtle events?

- Subtle Events
 Examples:
 - Antecedents:
 class-wide instruction delivered
 materials presented w/out vocal instruction
 - Consequences:
 neutral attention delivered
 alternative tangible offered
 demand delayed
Computer-Based Training
(Scott et al., in preparation)

- Will training with single exemplars generalize to other exemplars?
- Will training with single antecedents/consequences generalize to simultaneous antecedents/consequences?

- 20 “Test” Videos:
 - 6 responses (3 single/3 simultaneous)
 - 22 ant/con (4 trained; 18 other)

- Training Video
 - Lecture
 - Models
 - Practice
Computer-Based Training
(Scott et al., in preparation)

- **Experiment 1: (N = 18)**
 - Part 1: Single Exemplar Training
 - Part 2: Multiple Exemplar Training
 - Part 3: Simultaneous Event Training

- **Experiment 2: (N = 20)**
 - Part 1: Simultaneous Single Exemplar Training
 - Part 2: Multiple Exemplar Training
Computer-Based Training
(Scott et al., in preparation)

Conclusions

- Computer-based training effective
- Generalized across multiple exemplars
- Simultaneous training critical
 - But false alarms!
Questions/Comments?

Thank You!!

Lerman@uhcl.edu
Disseminating ABA into Public Schools: Prior and Current Research at the University of Houston, Clear Lake

Dorothea C. Lerman, Ph.D., BCBA-D